Title	Land Surveying		
Creator:	Snoberger, Woody wood210@yahoo.com		
Source:	2009-2010 Secondary PBL Project		
Project Idea:	A new wind farm is being put up in Keyser, WV. CME Engineering has asked you to survey the land by traversing the land to ensure that the wind farm is located on the proper plot of land. They believe that there will be some opposition to the project (because many believe the wind mills may be noisy, harm wildlife, and take up their land) so they not only want you to prove that the benefits outweigh the costs involved in the project, but that most of there concerns are unwarranted. Your job is to come up with a way to traverse the land and prove that it works, disprove the concerns, and show that the benefits outweigh the costs.		
Entry Event:	Have a Civil Engineer/land surveyor speak to class on how they work together.		
Content Standards \& Objectives:	Objectives Directly Taught or Learned Through Discovery	Identified Learning Target	Evidence of Success in Achieving Identified Learning Target
	M.O.T.3. 3 using various methods, basic identities and graphical representation - verify trigonometric identities - prove the sum and difference to two angles, double-angles, and half-angle identities	Know the proper form for an identity proof Know the basic trigonometric identities Know that the sum and difference of angles can be represented on the Unit Circle Derive the sum and difference, double-angle, and half-angle identities Use the sum and difference of two angles to prove the angle reduction formulas	Land Surveying: Proving law of Sines and Cosines and traversing the land. Teacher Made assessment Identity Activity: Using Identities to change the identity of the "person".
	M.O.T.3.4 justify and present the solutions of trigonometric equations that include both infinite and finite (over a restricted domain) solutions.	Know the Unit Circle values Know the basic trigonometric identities Know the domain restrictions of the basic trigonometric functions Know that division by zero and negative radicands generate restrictions Use correct notation to describe infinitely many solution points on the Unit Circle Analyze domain restrictions in the equation Solve equations by factoring Exclude the restricted values from the domain	Land Surveying: Proving law of sines and cosines to traverse the land. Teacher Made assessment: To further assess areas not covered such as the unit circle.

Know the Unit Circle values
Know the domain that makes the inverse a function

Know that the graph of the inverse is a reflection in $y=x$

Know that and $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$
$\arcsin y$ means the angle whose sine is y

Determine if an expression is an angle or a trigonometric value Explain the relationship between a trigonometric function and its inverse

Recognize the restricted values of a trigonometric function

Determine whether the problem involves inverse trigonometric values or inverse trigonometric functions

Graph the inverse trigonometric functions

Find inverse trigonometric values using technology

Solve equations involving trigonometric inverse functions

21st Century Skills

Information and Communication
Skills:

Learning Skills \& Technology Tools

21C.O.9-12.1.TT2 - Student routinely applies keyboarding skills, keyboard shortcut techniques, and mouse skills with facility, speed and accuracy.

21C.O.9-12.1.TT7 - Student uses advanced features and utilities of presentation software (e.g., slide transitions, master slides, narrations and timings, creating web-enabled presentations, creating a non-linear presentation) to communicate ideas to multiple audiences.

Teaching Strategies Culminating
Activity

The teacher will show examples of shortcuts to increase speed.

Students will use Presentation software with their presentations. They will show graphs and include web links to communicate their ideas.

Land Surveying: use inverse functions in the proof of law of sines and cosines

Teacher Made assessment
Identity Activity: Inverse functions to determine the place to live.

Identity Activity: Typing and using presentation software. Evaluated using Identity Activity Rubric

Land Surveying: Typing, using math writing software, and using presentation software. Evaluated using Land Surveying Rubric

21C.O.9-12.2.TT2 - Student collaborates with peers, experts and others to contribute to a content-related knowledge base by using technology to compile, synthesize, produce, and disseminate information, models, and other creative works.

21C.O.9-12.3.TT2 - Student works collaboratively to acquire information from electronic resources, conducts online research, and evaluates information as to validity, appropriateness, usefulness, comprehensiveness and bias.

Students will work in groups during this project and will have to show good collaboration skills and also show that they have individual accountability to the group.

Students will work in groups to find nonbiased information for research.

Identity Activity: Work in groups to help figure out their identity. Individual presentation though.
Evaluated using Identity Activity Rubric

Land Surveving: Work in groups and work with surveyors/engineers to show how to survey land. Evaluated using Land Surveying Rubric

Land Surveying: Find

 nonbiased information about surveying. Evaluated using Land Surveying Rubric| Performance Objectives: | Know
 Proper form for an identity proof
 Basic trigonometric identities
 The sum and difference of angles can be represented on the Unit Circle
 Unit Circle values
 Basic trigonometric identities
 Domain restrictions of the basic trigonometric functions
 Division by zero and negative radicands generate restrictions
 The domain that makes the inverse a function
 The graph of the inverse is a reflection in $y=x$
 $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$
 $\arcsin y$ means the angle whose sine is y
 Do
 Derive the sum and difference, double-angle, and half-angle identities
 Use the sum and difference of two angles to prove the angle reduction formulas
 Use correct notation to describe infinitely many solution points on the Unit Circle
 Analyze domain restrictions in the equation
 Solve equations by factoring
 Exclude the restricted values from the domain
 Determine if an expression is an angle or a trigonometric value
 Explain the relationship between a trigonometric function and its inverse
 Recognize the restricted values of a trigonometric function
 Determine whether the problem involves inverse trigonometric values or inverse trigonometric functions
 Graph the inverse trigonometric functions
 Find inverse trigonometric values using technology
 Solve equations involving trigonometric inverse functions |
| :---: | :---: |
| Driving Question: | How can Trigonometry be used to survey land? |
| Assessment Plan: | Identity Activity
 Description: This product is to get the students to learn trig identities and also the domain and range of inverse trig functions. The rubric will help guide the students.
 Scenario: You are part of a Trig protective custody program. Your job is to protect a Trig Function that was at the wrong place at the wrong time. You must first change their identity to something no criminal will ever be able to find, and allows them to keep their true identity deep down. You then will have to make a passport with this new |

Assessment and Reflection:

Map The Product:
identity. Then you must use inverse trigonometric functions to place them in a region of the world that will be comfortable for them.

Land Surveying

Description: In this product students will show how trig is used in land surveying, they will also establish a way to traverse the land by proving law of sines and/or law of cosines using trig identities and do a cost benefit analysis of the wind farm. The rubric will help guide the students.

Scenario: A new wind farm is being put up in Keyser, WV. CME Engineering has asked you to survey the land by traversing the land to ensure that the wind farm is located on the proper plot of land. They believe that there will be some opposition to the project (because many believe the wind mills may be noisy, harm wildlife, and take up their land) so they not only want you to prove that the benefits outweigh the costs involved in the project, but that most of there concerns are unwarranted. Your job is to come up with a way to traverse the land and prove that it works, disprove the concerns, and show that the benefits outweigh the costs.

Major Group Products	Land Surveying Identity Activity (Identity Part)
Major Individual Projects	Tests Quizzes Identity Activity (Presentation)

Rubric(s) I Will Use:
Other Classroom Assessments
For Learning:

B

Reflections:

Collaboration Group Performance Rubric	X	Written Communication	
Critical Thinking \& Problem Solving		Content Knowledge Identity Activity and Rubric Land Surveying Activity and Rubric	X
Oral Communication		Other Vocabulary Rating Scale	X
Quizzes/Tests		Practice Presentations	
Self-Evaluation Self Performance Rating Scale	X	Notes Notes for Proving Law of Sines and Cosines	X
Peer Evaluation Group Performance Rubric		Checklists/Observations Assignment Checklist	X
Online Tests and Exams		Concept Maps	
Survey		Focus Group	
Discussion		Task Management Chart Team Contract	X
Journal Writing/Learning Log Journal Prompts	X	Other Resource Center	

Project Map

Product: Land Surveying

Knowledge and Skills Needed	Already Have Learned	Taught Before the Project	
1. Oral Communication Skills	X		
2. Presentation Software	X		
3. Trig Identities		X	
4. Law of Sines/Cosines			

```
Teach21 Teach21 Project Based Learning
Land Surveying
Trigonometry
Page 5 of 6
```

	5. Triangle Properties X
Resources:	School-based Individuals: Teachers, Principals, Board Members Technology: Computer, Projector, Graphing Software, Excel Community: Engineers, Surveyors Materials: Graphing Calculators, Computer
Manage the Process:	Before Project Launch: Before Project begins students should know the basic triangle properties and also know the basic trigonometric identities. If students are having trouble in these areas I have provided a resource center that students could use in order to practice these concepts or you can teach mini-lessons if you think the majority of the class is having difficulty in these areas. The grouping should be heterogeneous and encompass all types of learning styles. To get an idea of what kind of learners you have you may want to have them talk a Learning Styles Inventory. If computers are available you could have them do an online one at this website: http://www.learning-styles online.com/inventory/questions.asp?cookieset=y or http://www.engr.ncsu.edu/learningstyles/ilsweb.html 1st Phase: The first day or two should be spent on teaching reviewing the basic trigonometric identities. Then introduce the Identity Activity. This project should take anywhere from 1 week to $1 \frac{1}{2}$ weeks. 2nd Phase: Have students work on Identity Activity. The students will make presentations during this week. When finished the students should complete both Self Performance Rating Scale and the Group Performance Rubric and Journal Prompt 1. 3rd Phase: Have a guest speaker (ideally a civil engineer and/or a surveyor) come in to speak to students on how they work together. Have students do Journal prompt 2 before starting the Surveying activity. Work on Land Surveying Activity a few days in class so that the teacher can answer questions about project. Do a mini lesson to help students learn to give an oral presentation. 4th Phase: Complete surveying activity and then complete both Self Performance Rating Scale and the Group Performance Rubric and do Journal Prompt 3. Students will present their findings in front of local surveyors/ civil engineers if possible.
Project Evaluation:	Journal Prompts
Resource Files Uploaded	Resource Files - UP3482WS2.doc (http://wveis.k12.wv.us/Teach21/CSO/Upload/UP3482WS2.doc) - UP3482WS3.doc (http://wveis.k12.wv.us/Teach21/CSO/Upload/UP3482WS3.doc) - UP3482WS4.doc (http://wveis.k12.wv.us/Teach21/CSO/Upload/UP3482WS4.doc) - UP3482WS5.doc (http://wveis.k12.wv.us/Teach21/CSO/Upload/UP3482WS5.doc) - UP3482WS6.doc (http://wveis.k12.wv.us/Teach21/CSO/Upload/UP3482WS6.doc) - UP3482WS7.doc

Teach21 Teach21 Project Based Learning
Land Surveving

- UP3482WS8.doc
(http://wveis.k12.wv.us/Teach21/CSO/Upload/UP3482WS8.doc)
- UP3482WS9.doc
(http://wveis.k12.wv.us/Teach21/CSO/Upload/UP3482WS9.doc)
- UP3482WS10.xls
(http://wveis.k12.wv.us/Teach21/CSO/Upload/UP3482WS10.xls)
- UP3482WS11.doc
(http://wveis.k12.wv.us/Teach21/CSO/Upload/UP3482WS11.doc)
- UP3482WS12.doc
(http://wveis.k12.wv.us/Teach21/CSO/Upload/UP3482WS12.doc)
- UP3482WS13.doc
(http://wveis.k12.wv.us/Teach21/CSO/Upload/UP3482WS13.doc)
- UP3482WS14.doc
(http://wveis.k12.wv.us/Teach21/CSO/Upload/UP3482WS14.doc)
- UP3482WS15.doc (http://wveis.k12.wv.us/Teach21/CSO/Upload/UP3482WS15.doc)
- UP3482WS16.doc
(http://wveis.k12.wv.us/Teach21/CSO/Upload/UP3482WS16.doc)

